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OSCILLATORY PROPERTIES OF THE SOLUTIONS OF STANDARD
LINEAR SETS OF DIFFERENTIAL EQUATIONS

V.A. Yakubovich

We shall examine the system /533t

dx/dt = JH(t)x, (1)

where x is a 2k-dimensional vector; H(t) =( a ; a = ai*, y = 

J = { .I o; Ik is a unit matrix of the order k; H(t) = H(t)*

is a real 2k x 2k symmetrical matrix function, 0 < t < a.

We shall assume that all coefficients of the differential

equations, unless otherwise stipulated, are real functions, in-

tegrable with Lebesque integrals at any finite interval.

1. We will designate asi the group of simplectic matrices,

that is real 2k x 2k matrices X, satisfying the relation X JX = J.

As is well known, for any t the matrizant of equation (10) X(t)q i

I.M. Gel'fand and V.B. Lipskiy1showed (1) that the group L|is
homeomorphic to the topological space on the circle 3D The angle

c, determining the position of a point on A, is called (1) the

argument of the corresponding matrix X, $ = Arg0 X*. Arg0 X is a

tNumbers in right-hand margin indicate pagination in the foreign
text.

*We shall present this definition in greater detail. Let X = SU,
where S is a positively defined, and U an orthogonal, matrix. From
XC it follows (1) that SG:A USj The matrix U has the form

U =l ul ujJ where w = ul + iu2 is a unitary matrix, det w = eiP

By definition 4 = ArgoX.
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multiple-valued function on FAI, each of the branches of which is
continuous; therefore, the increment of the argument along the

continuous curve X(t), designated as AArg0 X(t)' 2nw 'is ,defined

uniquely. The integer n'is call the index 'of the closed curve X(t).

Definition 1. We shall call the argument of the simplectic

matrix X any calculating real function determined on i~ so that:

1) if (ArgX ) is one of the values of Arg X, then the remaining

values are (Arg X)n = (Arg X) 0 + 2nw, n = ±1, ±2, ... ; 2) each

of the values of (Arg X)n is a continuous function X; 3) there

exists a continuous function X so that ArgU0(t) = 2r*. The fol-

lowing theorem shows that all similar "arguments" are, in a cer-

tain sense, equally justified.

Theorem 1. If X(t) is a closed curve of index n, then /5-34

AArg X(t) = 2nw. The closed curve X(t) may be subtended in the

group !R in a point then and only then if AArgU0(t) 0.

Let X = [Uv U2]c ( ]. We shall cite some of the possible

definitions of the argument of the matrix X:

ArglX = Arg det(Ul-iU2), Arg2 X = Arg det (V1 -iV2) Arg3 X =

Arg det(Ul-iV1), Arg4X = Arg det(U2 -iV2 ), Arg5 X ArgpJ+)

*Property 2) is understood in the following sense: for any matrix
X0 C,|1and any fixed value of Arg X0, which we shall designate
(Arg XO)n, for any e>0 it is possible to indicate 6>0 so that
where X - X

0
<6 a value of Arg X will be found, which we shall

designate as (Arg X)n , such that I(Arg X0 )n - (Arg X) I<e. In
this case, for any continuous curve S(t) the values (Arg X(t)) ,
n = 0, +1, +2, ..., form the calculating number of the continuous
functions. Therefore, the increment Arg X(t) = (Arg X(l))n -
(Arg X(0))n is uniquely defined, which justifies the formulation
of property 3).
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where pj are eigenvalues of the first type of the matrix X*.

The definition Arg X was used in reference (3). The proof of

theorem 1 repeats the proof of theorem 1.3 in reference (3).

The arguments Arg'X'and Arg"X will be called equivalent if

there exists a constant c>O so that, for any continuous curve

X(t)CE_ , IAArgI'XX(t) - AArg"X(t)l<c is fulfilled.

The following theorem plays an important role for the dis-

cussion given below:

Theorem 2. All arguments ArgjX, j = 0, . . ., 5 are equi-

valent.

It is possible to cite examples of non-equivalent definitions

of the argument. Below we shall assume Arg X to be one of ArgjX

or some definition of the argument equivalent to that enumerated.

2. Let X(t) be the matrizant of equation (1).

Definition 2. Equation (1) is called oscillatory if Arg X(t)

is unbounded and non-oscillatory if Arg X(t) is a bounded function

where t + + a.

We shall call equation (l) an equation'of .the positive

type if there e'xists a definition of the argument Arg X = ArgX,

equivalent to ArgjX, j = 0 .. ., 5 so that Arg*X(t) is a mono-

tonically increasing function t. Thus, in the case of the oscil-

latory nature of equation (1) of the positive type the matrizant

X(t) where t - o is infinitely "twisted" in the "torus" X and in

*In addition to M.G. Kreyn's (2) definition of the type of eigen-
values lying on a unit circle, we here consider the eigenvalues
lying inside a unit circle to be eigenvalues of the first type
and those outside it to be of the second type.
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the case of nonoscillation a similar "angle of twist"

AArg X(t) t-0 is an infinite value.

Let U(t), V(t) be an absolutely continuous matrix-function

satisfying the conditions: a) UW* = VU*; b) from Uz Vz = 0

it follows that z = 0. Let R = UU* + VW, and G = dUtV*_ dV- Udt' dt

r'nen G = G*, R = R*>O and dt Arg det (U + iV) = (t), where
dtI J

Xj(t) are the roots of the equation det [G(t) - XR(t)] = 0.

Using this formula or some complementing the proof of theorem 2

and 4 (4), we obtain:

Theorem 3. Let in equation (1) y(t) > 0 and Spy(t) > 0.

Then equation (1) is an equation of the positive type and4

Arg X = ArglX.

The theorem remains valid if the matrix a is taken instead

of the matrix y (then Arg X = Arg 2X).

We shall call the system of vectors xi, . ., xk an iso-

tropic system if (Jxj, xh) = 0, j, h = 1, . . ., k. Since for

any solutions xl(t), x2(t) of equation (1) (Jx, (t), x2(t)) =

const, then, in order to obtain an isotropic system of equations,

it is sufficient to take any isotropic system of vectors as

initial values. We shall designate asllxl, . . ., s = () the

matrix with the columns xl, . ., xk (U and V are square k x k

matrices).

We shall call the scalar function I(t)10 oscillatory if it

has infinitely many zeroes tn + + and nonoscillatory in the

opposite case.

Theorem 4. Let in equation (1) J(t) > 0* and xl,..., x, be /535

·Here and below the cond.ition y > 0 (y ? 0) for the-summetrical 
_matrix y signifies that (yc, c) > 0 ((yc, c) > 0 where c $ 0).



an arbitrary isotropic system of linearly independent real solu-

tions, IIx, ... IXk]I = (V) so that det U(t) I 0. Then equation (1)

is oscillatory or non-oscillatory simultaneously with the function

det U(t).

3. Let us consider the vector equation

dt dtdt R(t)d-t] + P(t)y = , (2)

where y is a k-dimensional function; R(t) = R(t)* > 0; P(t) =

P(t)*; R(t)-1 and P(t) are real k x k-matrix functions integrable

with Lebesque integers at any finite interval. Assuming x1 = y,
= dy

X= Rd and x = (xl), we reduce (2) to the equivalent equation
x2 = Rdt X2 ]

(1) with the matrix H(t) =0 R-1 which we shall call correspon-

ding equation (2). According to theorem 3 this equation will be

an equation of the positive type.

Definition 3 (Sternberg, Bliss, Reid [5,6]). Equation (2)

is called oscillatory if for any t2 < tl < to and a solution

y(t) X 0 of equation (2) so that y(tl) = y(t2) = 0, and non-

oscillatory in the opposite case.

Sternberg established [5] (on the basis of Bliss and Reid's

results [6]) for equation (2) a theorem, close in formulation to

theorem 4, where, however, oscillation is understood in the sense

of definition 3. Using this theorem we obtain:

Theorem 5. Equation (2) is oscillatory (non-oscillatory) in

the sense of definition 3 if and only if equation (1) correspond-

ing to it is oscillatory (non-oscillatory) in the sense of defi-

nition 2.*
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4. The scalar equation

: ~ (k-j) (k-j)
X (-L)J[ j(t)n(-J ) (k-) , (t).> O (3)

with the introduction of the vector x with the elements . =

(j -1)k j =
-n , j = 1, ..., k, k j+k = k-jj+l -k+j+l' j 1, . k,

E2k = $O0k reduces to equation (1) which we shall call correspond-
ing equation (3). In this equation a is a diagonal matrix with

the diagonal elements -1l' '') -*k; y is a diagonal matrix with

the diagonal elements 0, ..., 0, y-1 and B is a Jordan block cor-

responding to a zero eigenvalue.

Definition 4. (I. M. Glazman [8], L. D. Nikolenko [91).

Equation (3) is called oscillatory if for any to > 0 there is

found a solution y(t) ~ 0 having at least two k-dimensional zeroes

t2 > t1 > t
0
and non-oscillatory in the opposite case.

Theorem 6. Equation 3 is oscillatory (non-oscillatory) in

the sense of definition 4 if and only if the equation (1) cor-

responding to it is oscillatory (non-oscillatory) in the sense

of definition 2.

Using evaluation for different definitions of the argument

it is possible to obtain different satisfactory conditions of

the oscillation and non-oscillation of equations (1), (2), and

(3); we will not deal with this here.

5. Let us examine the equation

dx/dt = J[EH(t) + XHl(t)]
x

(4)

with self-conjugate boundary conditions, for example, of the form /536

X(T) = Sx(0), (5)

where SaCrJai . We shall assume that almost everywhere in (0, T)

H
1

> 0 and that from the conditions dz/dt = H (t)z and Hl(t)z = O
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it follows that z = O. Given these assumptions, the eigenvalues

A. may only be real; to the different eigenvalues there corres-
J T

pond the orthogonal latent vectors: f(H
1
X
j
P xh)dt = 0 where j $ h.

The classical case when Hl(t) > 0 almost everywhere is well

studied. Difficulties occur only in the case of degeneration

when det Hl(t) = 0 on a set of positive degree. In this case

there may exist a finite number of eigenvalues or they may not

exist at all. In the works of M. G. Kreyn [2,10], together with

other results, there is indicated the necessary and sufficient

condition that boundary problem (4)-(5) (where Ho = 0) have at

least one eigenvalue and also the sufficient condition that there

be infinitely many of them. The following theorem may be useful

in studying similar problems:

Theorem 7. We designate the matrizant of equation (4) as

X(t, X). In order for the boundary problem (4)-(5) to have

infinitely many eigenvalues An + (Xn -* -O), it is necessary and

sufficient that lim Arg X(T, X) = X (lim Arg X(T, X) = -o).

We note that under the assumptions which have been made,

Arg3 X(T, A) is a non-decreasing function of X; therefore, there

exist in finite or finite limits lim Arg3 X(T, A).

The geometrical sense of theorem 7 is obvious:

if lim Arg X(T, A) = X, then the "point" X(T, A), infinitely
X-\+

"twisted" in the "torus" i, hits the "surface" det(X-S) = 0 an

uncountable number of times; the corresponding values of .X will

also be eigenvalues.

Let hl(t) < ... < h2k(t) be eigenvalues of the matrix Hl(t).

It is possible to obtain the following criterion: if t kf E h (t)dt >
0 j=1 J

0, then the boundary problem (4)-(5) has an uncountable number of

eigenvalues A , n = 0, ±1, ±2, .. , A+ - where n + o.
n n -n
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From theorem 7 it also follows that the boundary problem for

the equation d2y/dt2 + [P(t) + XQ(t)]y = 0, P(t) = P(t)*, Q(t) =

Q(t)* almost everywhere, has an uncountable number of eigenvalues

Xn - X if SpQ(t) > 0 on a set of positive degree.

In an analogous fashion I. M. Glazman's results [8] on the

connection between the oscillation properties of equation of type

(4) and the properties of the spectrum of the corresponding dif-

ferential equations of the operators at an infinite interval T=-,

acquire an obvious geometrical sense.
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